Mean-field limits for non-linear Hawkes processes with excitation and inhibition
P. Pfaffelhuber,
S. Rotter and
J. Stiefel
Stochastic Processes and their Applications, 2022, vol. 153, issue C, 57-78
Abstract:
We study a multivariate, non-linear Hawkes process ZN on the complete graph with N nodes. Each vertex is either excitatory (probability p) or inhibitory (probability 1−p). We take the mean-field limit of ZN, leading to a multivariate point process Z̄. If p≠12, we rescale the interaction intensity by N and find that the limit intensity process solves a deterministic convolution equation and all components of Z̄ are independent. In the critical case, p=12, we rescale by N1/2 and obtain a limit intensity, which solves a stochastic convolution equation and all components of Z̄ are conditionally independent.
Keywords: Multivariate Hawkes process; Volterra equation; Spike train (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492200165X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:153:y:2022:i:c:p:57-78
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.07.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().