Controlled ordinary differential equations with random path-dependent coefficients and stochastic path-dependent Hamilton–Jacobi equations
Jinniao Qiu
Stochastic Processes and their Applications, 2022, vol. 154, issue C, 1-25
Abstract:
This paper is devoted to the stochastic optimal control problem of ordinary differential equations allowing for both path-dependence and measurable randomness. As opposed to the deterministic path-dependent cases, the value function turns out to be a random field on the path space and it is characterized by a stochastic path-dependent Hamilton–Jacobi (SPHJ) equation. A notion of viscosity solution is proposed and the value function is proved to be the unique viscosity solution to the associated SPHJ equation.
Keywords: Stochastic path-dependent Hamilton–Jacobi equation; Stochastic optimal control; Viscosity solution; Backward stochastic partial differential equation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001922
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:154:y:2022:i:c:p:1-25
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.09.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().