EconPapers    
Economics at your fingertips  
 

Rates of convergence for the superdiffusion in the Boltzmann–Grad limit of the periodic Lorentz gas

Songzi Li

Stochastic Processes and their Applications, 2022, vol. 154, issue C, 26-54

Abstract: In this article, we obtain the rates of convergence for superdiffusion in the Boltzmann–Grad limit of the periodic Lorentz gas, which is one of the fundamental models for studying diffusions in deterministic systems. In their seminal work, Marklof and Strömbergsson (2011) proved the Boltzmann–Grad limit of the periodic Lorentz gas, following which Marklof and Tóth (2016) established a superdiffusive central limit theorem in large time for the Boltzmann–Grad limit. Based on their work, we apply Stein’s method to derive the convergence rates for the superdiffusion in the Boltzmann–Grad limit of the periodic Lorentz gas. The convergence rate in Wasserstein distance is obtained for the discrete-time displacement, while the result for the Berry–Essen type bound is presented for the continuous-time displacement.

Keywords: Convergence rate; Superdiffusion; Periodic Lorentz gas; Stein’s method (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492200196X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:154:y:2022:i:c:p:26-54

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.09.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:154:y:2022:i:c:p:26-54