Large deviations for interacting multiscale particle systems
Z.W. Bezemek and
K. Spiliopoulos
Stochastic Processes and their Applications, 2023, vol. 155, issue C, 27-108
Abstract:
We consider a collection of weakly interacting diffusion processes moving in a two-scale locally periodic environment. We study the large deviations principle of the empirical distribution of the particles’ positions in the combined limit as the number of particles grow to infinity and the time-scale separation parameter goes to zero. We make use of weak convergence methods providing a convenient representation for the large deviations rate function, which allow us to characterize the effective controlled mean field dynamics. In addition, we rigorously obtain equivalent non-variational representations for the large deviations rate function as introduced by Dawson–Gärtner.
Keywords: Interacting particle systems; Multiscale processes; Empirical measure; Large deviations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002010
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:155:y:2023:i:c:p:27-108
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.09.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().