Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs
Emmanuel Coffie,
Sindre Duedahl and
Frank Proske
Stochastic Processes and their Applications, 2023, vol. 156, issue C, 156-195
Abstract:
In this paper, we show the existence of unique Malliavin differentiable solutions to SDE‘s driven by a fractional Brownian motion with Hurst parameter H<12 and singular, unbounded drift vector fields, for which we also prove a stability result. Further, using the latter results, we propose a stock price model with rough and correlated volatility, which also allows for capturing regime switching effects. Finally, we derive a Bismut–Elworthy–Li formula with respect to our stock price model for certain classes of vector fields.
Keywords: Bismut–Elworthy–Li formula; Singular SDEs; Fractional Brownian motion; Malliavin calculus; Stochastic flows; Stochastic volatility (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:156:y:2023:i:c:p:156-195
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.11.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().