Graphon particle system: Uniform-in-time concentration bounds
Erhan Bayraktar and
Ruoyu Wu
Stochastic Processes and their Applications, 2023, vol. 156, issue C, 196-225
Abstract:
In this paper, we consider graphon particle systems with heterogeneous mean-field type interactions and the associated finite particle approximations. Under suitable growth (resp. convexity) assumptions, we obtain uniform-in-time concentration estimates, over finite (resp. infinite) time horizon, for the Wasserstein distance between the empirical measure and its limit, extending the work of Bolley–Guillin–Villani (2007).
Keywords: Graphon particle systems; Mean field interaction; Heterogeneous interaction; Networks; Long time behavior; Transport inequalities (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492200240X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:156:y:2023:i:c:p:196-225
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.11.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().