Singular McKean–Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality
Panpan Ren
Stochastic Processes and their Applications, 2023, vol. 156, issue C, 291-311
Abstract:
The well-posedness and regularity estimates in initial distributions are derived for singular McKean–Vlasov SDEs, where the drift contains a locally standard integrable term and a superlinear term in the spatial variable, and is Lipschitz continuous in the distribution variable with respect to a weighted variation distance. When the superlinear term is strengthened to be Lipschitz continuous, Wang’s Harnack inequality is established. These results are new also for the classical Itô SDEs where the coefficients are distribution independent.
Keywords: Singular McKean–Vlasov SDE; Regularities; Wang’s Harnack inequality (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002423
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:156:y:2023:i:c:p:291-311
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.11.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().