Dual spaces of cadlag processes
Teemu Pennanen and
Ari-Pekka Perkkiö
Stochastic Processes and their Applications, 2023, vol. 157, issue C, 69-93
Abstract:
This article characterizes topological duals of spaces of cadlag processes. We extend functional analytic results of Dellacherie and Meyer that underlie many fundamental results in stochastic analysis and optimization. We unify earlier duality results on Lp and Orlicz spaces of cadlag processes and extend them to general Fréchet functions spaces. In particular, we obtain a characterization of the dual of cadlag processes of class (D) in terms of optional measures of essentially bounded variation. When applied to regular processes, we extend (Bismut, 1978) on projections of continuous processes. More interestingly, our argument yields characterizations of dual spaces of regular processes.
Keywords: Banach function space; Stochastic process; Topological dual; Optional projection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002575
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:157:y:2023:i:c:p:69-93
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.11.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().