EconPapers    
Economics at your fingertips  
 

Markov chain approximations for nonsymmetric processes

Marvin Weidner

Stochastic Processes and their Applications, 2023, vol. 158, issue C, 238-281

Abstract: The aim of this article is to prove that diffusion processes in Rd with a drift can be approximated by suitable Markov chains on n−1Zd. Moreover, we investigate sufficient conditions on the edge weights which guarantee convergence of the associated Markov chains to such Markov processes. Analogous questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and Dirichlet form techniques.

Keywords: Markov chain; Approximation; Dirichlet form; Nonlocal; Nonsymmetric; Drift (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000091
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:158:y:2023:i:c:p:238-281

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.01.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:158:y:2023:i:c:p:238-281