Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains
S. Valère Bitseki Penda
Stochastic Processes and their Applications, 2023, vol. 158, issue C, 282-314
Abstract:
Bitseki and Delmas (2022) have studied recently the central limit theorem for kernel estimator of invariant density in bifurcating Markov chains. We complete their work by proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui (2022), it is interesting to see that the distinction of the two regimes disappears and that we are able to get moderate deviation principle for large values of the ergodic rate. It is also interesting and surprising to see that for moderate deviation principle, the ergodic rate begins to have an impact on the choice of the bandwidth for values smaller than in the context of central limit theorem studied by Bitseki and Delmas (2022).
Keywords: Bifurcating Markov chains; Bifurcating auto-regressive process; Binary trees; Density estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:158:y:2023:i:c:p:282-314
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.01.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().