Statistical test for an urn model with random multidrawing and random addition
Irene Crimaldi,
Pierre-Yves Louis and
Ida G. Minelli
Stochastic Processes and their Applications, 2023, vol. 158, issue C, 342-360
Abstract:
We complete the study of the model introduced in Crimaldi et al., (2022). It is a two-color urn model with multiple drawing and random (non-balanced) time-dependent reinforcement matrix. The number of sampled balls at each time-step is random. We identify the exact rates at which the number of balls of each color grows to +∞ and define two strongly consistent estimators for the limiting reinforcement averages. Then we prove a Central Limit Theorem, which allows to design a statistical test for such averages.
Keywords: Multiple drawing urn; Randomly reinforced urn; Hypothesis testing; Population dynamics; Opinion dynamics; Response-adaptive design (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:158:y:2023:i:c:p:342-360
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.12.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().