Pathwise regularisation of singular interacting particle systems and their mean field limits
Fabian A. Harang and
Avi Mayorcas
Stochastic Processes and their Applications, 2023, vol. 159, issue C, 499-540
Abstract:
We investigate the regularising effect of certain perturbations by noise in singular interacting particle systems under the mean field scaling. In particular, we show that the addition of a suitably irregular path can regularise these dynamics and we recover the McKean–Vlasov limit under very broad assumptions on the interaction kernel; only requiring it to be controlled in a possibly distributional Besov space. In the particle system we include two sources of randomness, a common noise path Z which regularises the dynamics and a family of idiosyncratic noises, which we only assume to converge in mean field scaling to a representative noise in the McKean–Vlasov equation.
Keywords: Regularisation by noise; Interacting particle systems; Propagation of chaos; Averaged fields (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:159:y:2023:i:c:p:499-540
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.02.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().