On the optimality of the refraction–reflection strategies for Lévy processes
Kei Noba
Stochastic Processes and their Applications, 2023, vol. 160, issue C, 174-217
Abstract:
In this paper, we study de Finetti’s optimal dividend problem with capital injection under the assumption that the dividend strategies are absolutely continuous. In many previous studies, the process before being controlled was assumed to be a spectrally one-sided Lévy process, however in this paper we use a Lévy process that may have both positive and negative jumps. In the main theorem, we show that a refraction–reflection strategy is an optimal strategy. We also mention the existence and uniqueness of solutions of the stochastic differential equations that define refracted Lévy processes.
Keywords: Lévy process; Stochastic control; Optimal dividend problem (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000339
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:160:y:2023:i:c:p:174-217
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.02.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().