Perturbations of singular fractional SDEs
Paul Gassiat and
Łukasz Mądry
Stochastic Processes and their Applications, 2023, vol. 161, issue C, 137-172
Abstract:
We obtain well-posedness results for a class of ODE with a singular drift and additive fractional noise, whose right-hand-side involves some bounded variation terms depending on the solution. Examples of such equations are reflected equations, where the solution is constrained to remain in a rectangular domain, as well as so-called perturbed equations, where the dynamics depend on the running extrema of the solution. Our proof is based on combining the Catellier–Gubinelli approach based on Young nonlinear integration, with some Lipschitz estimates in p-variation for maps of Skorokhod type, due to Falkowski and Słominski. An important step requires to prove that fractional Brownian motion, when perturbed by sufficiently regular paths (in the sense of p-variation), retains its regularization properties. This is done by applying a variant of the stochastic sewing lemma.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000728
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:161:y:2023:i:c:p:137-172
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.04.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().