Fractal dimensions of the Rosenblatt process
Lara Daw and
George Kerchev
Stochastic Processes and their Applications, 2023, vol. 161, issue C, 544-571
Abstract:
The paper concerns the image, level and sojourn time sets associated with sample paths of the Rosenblatt process. We obtain results regarding the Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the logarithmic and pixel densities. As a preliminary step we also establish the time inversion property of the Rosenblatt process, as well as some technical points regarding the distribution of Z.
Keywords: Rosenblatt process; Image set; Level set; Sojourn times; Hausdorff dimension; Packing dimension; Intermediate dimension; Logarithmic density; Pixel density (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000698
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:161:y:2023:i:c:p:544-571
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.04.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().