Large deviations of ℓp-blocks of regularly varying time series and applications to cluster inference
Gloria Buriticá,
Thomas Mikosch and
Olivier Wintenberger
Stochastic Processes and their Applications, 2023, vol. 161, issue C, 68-101
Abstract:
In the regularly varying time series setting, a cluster of exceedances is a short period for which the supremum norm exceeds a high threshold. We propose to study a generalization of this notion considering short periods, or blocks, with ℓp−norm above a high threshold. Our main result derives new large deviation principles of extremal ℓp−blocks, which guide us to define and characterize spectral cluster processes in ℓp. We then study cluster inference in ℓp to motivate our results. We design consistent disjoint blocks methods to infer features of cluster processes. Our inferential setting promotes the use of large empirical quantiles from the ℓp−norm of blocks as threshold levels which eases implementation and also facilitates comparison for different p>0. Our approach highlights the advantages of cluster inference based on extremal ℓα−blocks, where α>0 is the index of regular variation of the series. We focus on inference of important indices in extreme value theory, e.g., the extremal index.
Keywords: Regularly varying time series; Large deviation principles; Cluster processes; Extremal index (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000662
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:161:y:2023:i:c:p:68-101
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.03.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().