Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations
Florian Hildebrandt and
Mathias Trabs
Stochastic Processes and their Applications, 2023, vol. 162, issue C, 171-217
Abstract:
Nonparametric estimation for semilinear SPDEs, namely stochastic reaction–diffusion equations in one space dimension, is studied. We consider observations of the solution field on a discrete grid in time and space with infill asymptotics in both coordinates. Firstly, we derive a nonparametric estimator for the reaction function of the underlying equation. The estimate is chosen from a finite-dimensional function space based on a least squares criterion. Oracle inequalities provide conditions for the estimator to achieve the usual nonparametric rate of convergence. Adaptivity is provided via model selection. Secondly, we show that the asymptotic properties of realized quadratic variation based estimators for the diffusivity and volatility carry over from linear SPDEs. In particular, we obtain a rate-optimal joint estimator of the two parameters. The result relies on our precise analysis of the Hölder regularity of the solution process and its nonlinear component, which may be of its own interest. Both steps of the calibration can be carried out simultaneously without prior knowledge of the parameters.
Keywords: Infill asymptotics; Realized quadratic variation; Model selection; Semilinear stochastic partial differential equations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:162:y:2023:i:c:p:171-217
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.04.019
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().