Multivariate continuous-time autoregressive moving-average processes on cones
Fred Espen Benth and
Sven Karbach
Stochastic Processes and their Applications, 2023, vol. 162, issue C, 299-337
Abstract:
In this article we study multivariate continuous-time autoregressive moving-average (MCARMA) processes with values in convex cones. More specifically, we introduce matrix-valued MCARMA processes with Lévy noise and present necessary and sufficient conditions for processes from this class to be cone valued. We derive specific hands-on conditions in the following two cases: First, for classical MCARMA on Rd with values in the positive orthant Rd+. Second, for MCARMA processes on real square matrices assuming values in the cone of symmetric and positive semi-definite matrices. Both cases are relevant for applications and we give several examples of positivity ensuring parameter specifications. In addition to the above, we discuss the capability of positive semi-definite MCARMA processes to model the spot covariance process in multivariate stochastic volatility models. We justify the relevance of MCARMA based stochastic volatility models by an exemplary analysis of the second order moment structure of positive semi-definite well-balanced Ornstein–Uhlenbeck based models.
Keywords: Multivariate CARMA processes; Positive MCARMA; Positive semi-definite processes; Multivariate stochastic volatility (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923000984
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:162:y:2023:i:c:p:299-337
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.05.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().