Limit theory of sparse random geometric graphs in high dimensions
Gilles Bonnet,
Christian Hirsch,
Daniel Rosen and
Daniel Willhalm
Stochastic Processes and their Applications, 2023, vol. 163, issue C, 203-236
Abstract:
We study topological and geometric functionals of l∞-random geometric graphs on the high-dimensional torus in a sparse regime, where the expected number of neighbors decays exponentially in the dimension. More precisely, we establish moment asymptotics, functional central limit theorems and Poisson approximation theorems for certain functionals that are additive under disjoint unions of graphs. For instance, this includes simplex counts and Betti numbers of the Rips complex, as well as general subgraph counts of the random geometric graph. We also present multi-additive extensions that cover the case of persistent Betti numbers of the Rips complex.
Keywords: Random geometric graph; High dimension; Functional central limit theorem; Poisson approximation; Betti numbers (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001230
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:163:y:2023:i:c:p:203-236
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.06.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().