Implicit renewal theory for exponential functionals of Lévy processes
Jonas Arista and
Víctor Rivero
Stochastic Processes and their Applications, 2023, vol. 163, issue C, 262-287
Abstract:
We establish a new integral equation for the probability density of the exponential functional of a Lévy process and provide a three-term (Wiener–Hopf type) factorisation of its law. We explain how these results complement the techniques used in the study of exponential functionals and, in some cases, provide quick proofs of known results and derive new ones. We explain how the factors appearing in the three-term factorisation determine the local and asymptotic behaviour of the law of the exponential functional. We describe the behaviour of the tail distribution at infinity and of the distribution at zero under some mild assumptions.
Keywords: Lévy processes; Exponential functionals; Factorisations in law; Integral equations; Tail asymptotics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001254
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:163:y:2023:i:c:p:262-287
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.06.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().