CBI-time-changed Lévy processes
Claudio Fontana,
Alessandro Gnoatto and
Guillaume Szulda
Stochastic Processes and their Applications, 2023, vol. 163, issue C, 323-349
Abstract:
We introduce and study the class of CBI-time-changed Lévy processes (CBITCL), obtained by time-changing a Lévy process with respect to an integrated continuous-state branching process with immigration (CBI). We characterize CBITCL processes as solutions to a certain stochastic integral equation and relate them to affine stochastic volatility processes. We provide a complete analysis of the time of explosion of exponential moments of CBITCL processes and study their asymptotic behavior. In addition, we show that CBITCL processes are stable with respect to a suitable class of equivalent changes of measure. As illustrated by some examples, CBITCL processes are flexible and tractable processes with a significant potential for applications in finance.
Keywords: Branching process; Change of time; Affine process; Stochastic volatility; Moment explosion (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:163:y:2023:i:c:p:323-349
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.06.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().