EconPapers    
Economics at your fingertips  
 

Asymptotic deviation bounds for cumulative processes

Patrick Cattiaux, Laetitia Colombani and Manon Costa

Stochastic Processes and their Applications, 2023, vol. 163, issue C, 85-105

Abstract: The aim of this paper is to get asymptotic deviation bounds via a Large Deviation Principle (LDP) for cumulative processes also known as compound renewal processes or renewal-reward processes. These processes cumulate independent random variables occurring in time interval given by a renewal process. Our result extends the one obtained in Lefevere et al. (2011) in the sense that we impose no specific dependency between the cumulated random variables and the renewal process and the proof uses Mariani and Zambotti (2014). In the companion paper Cattiaux et al. (2022) we apply this principle to Hawkes processes with inhibition. Under some assumptions Hawkes processes are indeed cumulative processes, but they do not enter the framework of Lefevere et al. (2011).

Keywords: Cumulative processes; Large deviation; Deviation inequalities; Hawkes processes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:163:y:2023:i:c:p:85-105

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.05.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:85-105