A new Mertens decomposition of Yg,ξ-submartingale systems. Application to BSDEs with weak constraints at stopping times
Roxana Dumitrescu,
Romuald Elie,
Wissal Sabbagh and
Chao Zhou
Stochastic Processes and their Applications, 2023, vol. 164, issue C, 183-205
Abstract:
We first introduce the concept of Yg,ξ-submartingale systems, where the nonlinear operator Yg,ξ corresponds to the first component of the solution of a reflected BSDE with generator g and lower obstacle ξ. We first show that, in the case of a left-limited right-continuous obstacle, any Yg,ξ-submartingale system can be aggregated by a process which is right-lower semicontinuous. We then prove a Mertens decomposition, by using an original approach which does not make use of the standard penalization technique. These results are in particular useful for the treatment of control/stopping game problems and, to the best of our knowledge, they are completely new in the literature. As an application, we introduce a new class of Backward Stochastic Differential Equations (in short BSDEs) with weak constraints at stopping times, which are related to the partial hedging of American options. We study the wellposedness of such equations and, using the Yg,ξ-Mertens decomposition, we show that the family of minimal time-t-values Yt, with (Y,Z) a supersolution of the BSDE with weak constraints, admits a representation in terms of a reflected backward stochastic differential equation.
Keywords: Mertens decomposition; BSDEs with weak constraints at stopping times; Optimal control; Optimal stopping; Stochastic game; Stochastic target (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:164:y:2023:i:c:p:183-205
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.07.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().