Limit theorems for quantum trajectories
Tristan Benoist,
Jan-Luka Fatras and
Clément Pellegrini
Stochastic Processes and their Applications, 2023, vol. 164, issue C, 288-310
Abstract:
Quantum trajectories are Markov processes modeling the evolution of a quantum system subjected to repeated independent measurements. Under purification and irreducibility assumptions, these Markov processes admit a unique invariant measure — see Benoist et al. (2019). In this article we prove finer limit theorems such as Law of Large Numbers (LLN), Functional Central Limit Theorem, Law of Iterated Logarithm and Moderate Deviation Principle. The proof of the LLN is based on Birkhoff’s ergodic theorem and an analysis of harmonic functions. The other theorems are proved using martingale approximation of empirical sums.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:164:y:2023:i:c:p:288-310
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.07.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().