EconPapers    
Economics at your fingertips  
 

Limit theorems for quantum trajectories

Tristan Benoist, Jan-Luka Fatras and Clément Pellegrini

Stochastic Processes and their Applications, 2023, vol. 164, issue C, 288-310

Abstract: Quantum trajectories are Markov processes modeling the evolution of a quantum system subjected to repeated independent measurements. Under purification and irreducibility assumptions, these Markov processes admit a unique invariant measure — see Benoist et al. (2019). In this article we prove finer limit theorems such as Law of Large Numbers (LLN), Functional Central Limit Theorem, Law of Iterated Logarithm and Moderate Deviation Principle. The proof of the LLN is based on Birkhoff’s ergodic theorem and an analysis of harmonic functions. The other theorems are proved using martingale approximation of empirical sums.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:164:y:2023:i:c:p:288-310

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.07.014

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:164:y:2023:i:c:p:288-310