On the first and second largest components in the percolated random geometric graph
Lyuben Lichev,
Bas Lodewijks,
Dieter Mitsche and
Bruno Schapira
Stochastic Processes and their Applications, 2023, vol. 164, issue C, 311-336
Abstract:
The percolated random geometric graph Gn(λ,p) has vertex set given by a Poisson Point Process in the square [0,n]2, and every pair of vertices at distance at most 1 independently forms an edge with probability p. For a fixed p, Penrose proved that there is a critical intensity λc=λc(p) for the existence of a giant component in Gn(λ,p). Our main result shows that for λ>λc, the size of the second-largest component is a.a.s. of order (logn)2. Moreover, we prove that the size of the largest component rescaled by n converges almost surely to a constant, thereby strengthening results of Penrose. We complement our study by showing a certain duality result between percolation thresholds associated to the Poisson intensity and the bond percolation of G(λ,p) (which is the infinite volume version of Gn(λ,p)). Moreover, we prove that for a large class of graphs converging in a suitable sense to G(λ,1), the corresponding critical percolation thresholds converge as well to the ones of G(λ,1).
Keywords: Random geometric graph; Second-largest component; Giant component; Continuum percolation; Bond percolation; Schramm’s locality conjecture (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:164:y:2023:i:c:p:311-336
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.07.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().