Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions
Xiliang Fan,
Ting Yu and
Chenggui Yuan
Stochastic Processes and their Applications, 2023, vol. 164, issue C, 383-415
Abstract:
In this paper, we study small-noise asymptotic behaviors for a class of distribution dependent stochastic differential equations driven by fractional Brownian motions with Hurst parameter H∈(1/2,1) and magnitude ϵH. By building up a variational framework and two weak convergence criteria in the factional Brownian motion setting, we establish the large and moderate deviation principles for these types of equations. Besides, we also obtain the central limit theorem, in which the limit process solves a linear equation involving the Lions derivative of the drift coefficient.
Keywords: Distribution dependent SDE; Fractional Brownian motion; Large deviation principle; Moderate deviation principle; Central limit theorem (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001503
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:164:y:2023:i:c:p:383-415
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.07.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().