Infinite dimensional Piecewise Deterministic Markov Processes
Paul Dobson and
Joris Bierkens
Stochastic Processes and their Applications, 2023, vol. 165, issue C, 337-396
Abstract:
In this paper we aim to construct infinite dimensional versions of well established Piecewise Deterministic Monte Carlo methods, such as the Bouncy Particle Sampler, the Zig-Zag Sampler and the Boomerang Sampler. In order to do so we provide an abstract infinite dimensional framework for Piecewise Deterministic Markov Processes (PDMPs) with unbounded event intensities. We further develop exponential convergence to equilibrium of the infinite dimensional Boomerang Sampler, using hypocoercivity techniques. Furthermore we establish how the infinite dimensional Boomerang Sampler admits a finite dimensional approximation, rendering it suitable for computer simulation.
Keywords: Piecewise Deterministic Markov Processes; Infinite Dimensional Stochastic Process; Hypocoercivity; Uniform in time approximation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001771
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:165:y:2023:i:c:p:337-396
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.08.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().