Multifractional Hermite processes: Definition and first properties
L. Loosveldt
Stochastic Processes and their Applications, 2023, vol. 165, issue C, 465-500
Abstract:
We define multifractional Hermite processes which generalize and extend both multifractional Brownian motion and Hermite processes. It is done by substituting the Hurst parameter in the definition of Hermite processes as a multiple Wiener–Itô integral by a Hurst function. Then, we study the pointwise regularity of these processes, their local asymptotic self-similarity and some fractal dimensions of their graph. Our results show that the fundamental properties of multifractional Hermite processes are, as desired, governed by the Hurst function. Complements are given in the second order Wiener chaos, using facts from Malliavin calculus.
Keywords: Hermite processes; Multifractional processes; Modulus of continuity; Local asymptotic self-similarity; Fractal dimensions; Malliavin calculus (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:165:y:2023:i:c:p:465-500
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.09.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().