EconPapers    
Economics at your fingertips  
 

Generalized Feynman–Kac formula under volatility uncertainty

Bahar Akhtari, Francesca Biagini, Andrea Mazzon and Katharina Oberpriller

Stochastic Processes and their Applications, 2023, vol. 166, issue C

Abstract: In this paper we provide a generalization of a Feynmac–Kac formula under volatility uncertainty in presence of a linear term in the PDE due to discounting. We state our result under different hypothesis with respect to the derivation given by Hu et al. (2014), where the Lipschitz continuity of some functionals is assumed which is not necessarily satisfied in our setting. In particular, we show that the G-conditional expectation of a discounted payoff is a viscosity solution of a nonlinear PDE. In applications, this permits to calculate such a sublinear expectation in a computationally efficient way.

Keywords: Feynmac–Kac formula; Sublinear conditional expectation; Nonlinear PDEs (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002605
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:166:y:2023:i:c:s0304414922002605

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.12.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:166:y:2023:i:c:s0304414922002605