Unbiased Optimal Stopping via the MUSE
Zhengqing Zhou,
Guanyang Wang,
Jose H. Blanchet and
Peter W. Glynn
Stochastic Processes and their Applications, 2023, vol. 166, issue C
Abstract:
We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The MUSE, short for ‘Multilevel Unbiased Stopping Estimator’, constructs the unbiased Multilevel Monte Carlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way. In contrast to traditional sequential methods, the MUSE can be implemented in parallel. We prove the MUSE has finite variance, finite computational complexity, and achieves ɛ-accuracy with O(1/ɛ2) computational cost under mild conditions. We demonstrate MUSE empirically in an option pricing problem involving a high-dimensional input and the use of many parallel processors.
Keywords: Multilevel monte carlo; Unbiased estimator; Optimal stopping; Parallel computing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922002654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:166:y:2023:i:c:s0304414922002654
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.12.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().