Local repulsion of planar Gaussian critical points
Safa Ladgham and
Raphaël Lachieze-Rey
Stochastic Processes and their Applications, 2023, vol. 166, issue C
Abstract:
We study the local repulsion between critical points of a stationary isotropic smooth planar Gaussian field. We show that the critical points can experience a soft repulsion which is maximal in the case of the random planar wave model, or a soft attraction of arbitrary high order. If the type of critical points is specified (extremum, saddle point), the points experience a hard local repulsion, that we quantify with the precise magnitude of the second factorial moment of the number of points in a small ball.
Keywords: Gaussian random fields; Stationary random fields; Critical points; Kac–Rice formula; Repulsive point process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001850
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:166:y:2023:i:c:s0304414923001850
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.09.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().