EconPapers    
Economics at your fingertips  
 

On the meeting of random walks on random DFA

Matteo Quattropani and Federico Sau

Stochastic Processes and their Applications, 2023, vol. 166, issue C

Abstract: We consider two random walks evolving synchronously on a random out-regular graph of n vertices with bounded out-degree r≥2, also known as a random Deterministic Finite Automaton (DFA). We show that, with high probability with respect to the generation of the graph, the meeting time of the two walks is stochastically dominated by a geometric random variable of rate (1+o(1))n−1, uniformly over their starting locations. Further, we prove that this upper bound is typically tight, i.e., it is also a lower bound when the locations of the two walks are selected uniformly at random. Our work takes inspiration from a recent conjecture by Fish and Reyzin (2017) in the context of computational learning, the connection with which is discussed.

Keywords: Random walks; Meeting times; First Visit Time Lemma; Random Deterministic Finite Automaton (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001898
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:166:y:2023:i:c:s0304414923001898

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104225

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:166:y:2023:i:c:s0304414923001898