Diffusion spiders: Green kernel, excessive functions and optimal stopping
Jukka Lempa,
Ernesto Mordecki and
Paavo Salminen
Stochastic Processes and their Applications, 2024, vol. 167, issue C
Abstract:
A diffusion spider is a strong Markov process with continuous paths taking values on a graph with one vertex and a finite number of edges (of infinite length). An example is Walsh’s Brownian spider where the process on each edge behaves as a Brownian motion. In this paper we calculate firstly the density of the resolvent kernel in terms of the characteristics of the underlying diffusion. Excessive functions are studied via the Martin boundary theory. A crucial result is an expression for the representing measure of a given excessive function. These results are used to solve optimal stopping problems for diffusion spiders.
Keywords: Hitting time; Excursion entrance law; Riesz representation; Harmonic function; Skew Brownian motion; Stopping region (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002016
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.104229
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().