EconPapers    
Economics at your fingertips  
 

Diffusion spiders: Green kernel, excessive functions and optimal stopping

Jukka Lempa, Ernesto Mordecki and Paavo Salminen

Stochastic Processes and their Applications, 2024, vol. 167, issue C

Abstract: A diffusion spider is a strong Markov process with continuous paths taking values on a graph with one vertex and a finite number of edges (of infinite length). An example is Walsh’s Brownian spider where the process on each edge behaves as a Brownian motion. In this paper we calculate firstly the density of the resolvent kernel in terms of the characteristics of the underlying diffusion. Excessive functions are studied via the Martin boundary theory. A crucial result is an expression for the representing measure of a given excessive function. These results are used to solve optimal stopping problems for diffusion spiders.

Keywords: Hitting time; Excursion entrance law; Riesz representation; Harmonic function; Skew Brownian motion; Stopping region (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002016

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104229

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002016