EconPapers    
Economics at your fingertips  
 

Scale-free percolation mixing time

Alessandra Cipriani and Michele Salvi

Stochastic Processes and their Applications, 2024, vol. 167, issue C

Abstract: Assign to each vertex of the one-dimensional torus i.i.d. weights with a heavy-tail of index τ−1>0. Connect then each couple of vertices with probability roughly proportional to the product of their weights and that decays polynomially with exponent α>0 in their distance. The resulting graph is called scale-free percolation. The goal of this work is to study the mixing time of the simple random walk on this structure. We depict a rich phase diagram in α and τ. In particular we prove that the presence of hubs can speed up the mixing of the chain. We use different techniques for each phase, the most interesting of which is a bootstrap procedure to reduce the model from a phase where the degrees have bounded averages to a setting with unbounded averages.

Keywords: Random graph; Mixing time; Scale-free percolation; Degree distribution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002089
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002089

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104236

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002089