Spread of parasites affecting death and division rates in a cell population
Aline Marguet and
Charline Smadi
Stochastic Processes and their Applications, 2024, vol. 168, issue C
Abstract:
We introduce a general class of branching Markov processes for the modelling of a parasite infection in a cell population. Each cell contains a quantity of parasites which evolves as a diffusion with positive jumps. The drift, diffusive function and positive jump rate of this quantity of parasites depend on its current value. The division rate of the cells also depends on the quantity of parasites they contain. At division, a cell gives birth to two daughter cells and shares its parasites between them. Cells may also die, at a rate which may depend on the quantity of parasites they contain. We study the long-time behaviour of the parasite infection.
Keywords: Continuous-time and space branching Markov processes; Structured population; Long-time behaviour; Birth and death processes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492300234X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:168:y:2024:i:c:s030441492300234x
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.104262
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().