EconPapers    
Economics at your fingertips  
 

Affine Volterra processes with jumps

Alessandro Bondi, Giulia Livieri and Sergio Pulido

Stochastic Processes and their Applications, 2024, vol. 168, issue C

Abstract: The theory of affine processes has been recently extended to continuous stochastic Volterra equations. These so-called affine Volterra processes overcome modeling shortcomings of affine processes by incorporating path-dependent features and trajectories with regularity different from the paths of Brownian motion. More specifically, singular kernels yield rough affine processes. This paper extends the theory by considering affine stochastic Volterra equations with jumps. This extension is not straightforward because the jump structure and possible singularities of the kernel may induce explosions of the trajectories. This study also provides exponential affine formulas for the conditional Fourier–Laplace transform of marked Hawkes processes.

Keywords: Affine processes; Affine Volterra processes; Stochastic Volterra equations; Hawkes processes; Riccati–Volterra equations; Rough volatility (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002363
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002363

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104264

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-27
Handle: RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002363