EconPapers    
Economics at your fingertips  
 

Approximate filtering via discrete dual processes

Guillaume Kon Kam King, Andrea Pandolfi, Marco Piretto and Matteo Ruggiero

Stochastic Processes and their Applications, 2024, vol. 168, issue C

Abstract: We consider the task of filtering a dynamic parameter evolving as a diffusion process, given data collected at discrete times from a likelihood which is conjugate to the reversible law of the diffusion, when a generic dual process on a discrete state space is available. Recently, it was shown that duality with respect to a death-like process implies that the filtering distributions are finite mixtures, making exact filtering and smoothing feasible through recursive algorithms with polynomial complexity in the number of observations. Here we provide general results for the case where the dual is a regular jump continuous-time Markov chain on a discrete state space, which typically leads to filtering distribution given by countable mixtures indexed by the dual process state space. We investigate the performance of several approximation strategies on two hidden Markov models driven by Cox–Ingersoll–Ross and Wright–Fisher diffusions, which admit duals of birth-and-death type, and compare them with the available exact strategies based on death-type duals and with bootstrap particle filtering on the diffusion state space as a general benchmark.

Keywords: Bayesian inference; Diffusion; Duality; Hidden Markov models; Particle filtering; Smoothing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002405

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104268

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:168:y:2024:i:c:s0304414923002405