Negative binomial distributions for point processes
Gérard Gregoire
Stochastic Processes and their Applications, 1984, vol. 16, issue 2, 179-188
Abstract:
Negative binomial point processes are defined for which all finite-dimensional distributions associated with disjoint bounded Borel sets are negative binomial in the usual sense. For these processes we study classical notions such as infinite divisibility, conditional distributions, Palm probabilities, convergence, etc. Negative binomial point processes appear to be of interest because they are mathematically tractable models which can be used in many situations. The general results throw some new light on some well-known special cases like the Polya process and the Yule process.
Date: 1984
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(84)90018-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:16:y:1984:i:2:p:179-188
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().