EconPapers    
Economics at your fingertips  
 

Drift estimation for a multi-dimensional diffusion process using deep neural networks

Akihiro Oga and Yuta Koike

Stochastic Processes and their Applications, 2024, vol. 170, issue C

Abstract: Recently, many studies have shed light on the high adaptivity of deep neural network methods in nonparametric regression models, and their superior performance has been established for various function classes. Motivated by this development, we study a deep neural network method to estimate the drift coefficient of a multi-dimensional diffusion process from discrete observations. We derive generalization error bounds for least squares estimates based on deep neural networks and show that they achieve the minimax rate of convergence up to a logarithmic factor when the drift function has a compositional structure.

Keywords: Deep learning; Least squares estimation; Minimax estimation; Nonparametric drift estimation; Oracle inequality (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002120
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:170:y:2024:i:c:s0304414923002120

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104240

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:170:y:2024:i:c:s0304414923002120