Weak Dirichlet processes and generalized martingale problems
Elena Bandini and
Francesco Russo
Stochastic Processes and their Applications, 2024, vol. 170, issue C
Abstract:
In this paper we explain how the notion of weak Dirichlet process is the suitable generalization of the one of semimartingale with jumps. For such a process we provide a unique decomposition: in particular we introduce characteristics for weak Dirichlet processes. We also introduce a weak concept (in law) of finite quadratic variation. We investigate a set of new useful chain rules and we discuss a general framework of (possibly path-dependent with jumps) martingale problems with a set of examples of SDEs with jumps driven by a distributional drift.
Keywords: Weak Dirichlet processes; Càdlàg semimartingales; Jump processes; Martingale problem; Singular drift; Random measure (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923002338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:170:y:2024:i:c:s0304414923002338
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.104261
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().