Approximate Message Passing for sparse matrices with application to the equilibria of large ecological Lotka–Volterra systems
Walid Hachem
Stochastic Processes and their Applications, 2024, vol. 170, issue C
Abstract:
This paper is divided into two parts. The first part is devoted to the study of a class of Approximate Message Passing (AMP) algorithms which are widely used in the fields of statistical physics, machine learning, or communication theory. The AMP algorithms studied in this part are those where the measurement matrix has independent elements, up to the symmetry constraint when this matrix is symmetric, with a variance profile that can be sparse. The AMP problem is solved by adapting the approach of Bayati, Lelarge, and Montanari (2015) to this matrix model.
Keywords: Approximate Message Passing; Equilibria of ecological systems; Lotka–Volterra Ordinary Differential Equations; Sparse random matrices (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492300248X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:170:y:2024:i:c:s030441492300248x
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.104276
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().