A large deviation principle for the empirical measures of Metropolis–Hastings chains
Federica Milinanni and
Pierre Nyquist
Stochastic Processes and their Applications, 2024, vol. 170, issue C
Abstract:
To sample from a given target distribution, Markov chain Monte Carlo (MCMC) sampling relies on constructing an ergodic Markov chain with the target distribution as its invariant measure. For any MCMC method, an important question is how to evaluate its efficiency. One approach is to consider the associated empirical measure and how fast it converges to the stationary distribution of the underlying Markov process. Recently, this question has been considered from the perspective of large deviation theory, for different types of MCMC methods, including, e.g., non-reversible Metropolis–Hastings on a finite state space, non-reversible Langevin samplers, the zig-zag sampler, and parallel tempering. This approach, based on large deviations, has proven successful in analysing existing methods and designing new, efficient ones. However, for the Metropolis–Hastings algorithm on more general state spaces, the workhorse of MCMC sampling, the same techniques have not been available for analysing performance, as the underlying Markov chain dynamics violate the conditions used to prove existing large deviation results for empirical measures of a Markov chain. This also extends to methods built on the same idea as Metropolis–Hastings, such as the Metropolis-Adjusted Langevin Method or ABC-MCMC. In this paper, we take the first steps towards such a large-deviations based analysis of Metropolis–Hastings-like methods, by proving a large deviation principle for the empirical measures of Metropolis–Hastings chains. In addition, we also characterize the rate function and its properties in terms of the acceptance- and rejection-part of the Metropolis–Hastings dynamics.
Keywords: Large deviations; Empirical measure; Markov chain Monte Carlo; Metropolis–Hastings (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492300265X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:170:y:2024:i:c:s030441492300265x
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2023.104293
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().