EconPapers    
Economics at your fingertips  
 

Wetting on a wall and wetting in a well: Overview of equilibrium properties

Quentin Berger and Brune Massoulié

Stochastic Processes and their Applications, 2024, vol. 170, issue C

Abstract: We study the wetting model, which considers a random walk constrained to remain above a hard wall, but with additional pinning potential for each contact with the wall. This model is known to exhibit a wetting phase transition, from a localized phase (with trajectories pinned to the wall) to a delocalized phase (with unpinned trajectories). As a preamble, we take the opportunity to present an overview of the model, collecting and complementing well-known and other folklore results. Then, we investigate a version with elevated boundary conditions, which has been studied in various contexts both in the physics and the mathematics literature; it can alternatively be seen as a wetting model in a square well. We complement here existing results, focusing on the equilibrium properties of the model, for a general underlying random walk (in the domain of attraction of a stable law). First, we compute the free energy and give some properties of the phase diagram; interestingly, we find that, in addition to the wetting transition, a so-called saturation phase transition may occur. Then, in the so-called Cramér’s region, we find an exact asymptotic equivalent of the partition function, together with a (local) central limit theorem for the fluctuations of the left-most and right-most pinned points, jointly with the number of contacts at the bottom of the well.

Keywords: Wetting; Pinning; Polymers; Random walk; Large deviations; Central limit theorem (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492400005X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:170:y:2024:i:c:s030441492400005x

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104299

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:170:y:2024:i:c:s030441492400005x