EconPapers    
Economics at your fingertips  
 

Explosion and non-explosion for the continuous-time frog model

Viktor Bezborodov, Luca Di Persio and Peter Kuchling

Stochastic Processes and their Applications, 2024, vol. 171, issue C

Abstract: We consider the continuous-time frog model on Z. At time t=0, there are η(x) particles at x∈Z, each of which is represented by a random variable. In particular, (η(x))x∈Z is a collection of independent random variables with a common distribution μ, μ(Z+)=1, Z+≔N∪{0}, N={1,2,3,…}. The particles at the origin are active, all other ones being assumed as dormant, or sleeping, hence not active. Active particles perform a simple symmetric continuous-time random walk in Z (that is, a random walk with exp(1)-distributed jump times and jumps −1 and 1, each with probability 1/2), independently of all other particles. Sleeping particles stay still until the first arrival of an active particle to their location; upon arrival they become active and start their own simple random walks. Different sets of conditions are given ensuring explosion, respectively non-explosion, of the continuous-time frog model. Our results show in particular that if μ is the distribution of eYlnY with a non-negative random variable Y satisfying EY<∞, then a.s. no explosion occurs. On the other hand, if a∈(0,1) and μ is the distribution of eX, where P{X≥t}=t−a, t≥1, then explosion occurs a.s. The proof relies on a certain type of comparison to a percolation model which we call totally asymmetric discrete inhomogeneous Boolean percolation.

Keywords: frog model; stochastic growth model; explosion; Boolean percolation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000358
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:171:y:2024:i:c:s0304414924000358

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104329

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:171:y:2024:i:c:s0304414924000358