Hyperbolic radial spanning tree
David Coupier,
Lucas Flammant and
Viet Chi Tran
Stochastic Processes and their Applications, 2024, vol. 172, issue C
Abstract:
We define and analyze an extension to the d-dimensional hyperbolic space of the Radial Spanning Tree (RST) introduced by Baccelli and Bordenave in the two-dimensional Euclidean space (2007). In particular, we will focus on the description of the infinite branches of the tree. The properties of the two-dimensional Euclidean RST are extended to the hyperbolic case in every dimension: almost surely, every infinite branch admits an asymptotic direction and each asymptotic direction is reached by at least one infinite branch. Moreover, the branch converging to any deterministic asymptotic direction is unique almost surely. To obtain results for any dimension, a completely new approach is considered here. Our strategy mainly involves the two following ingredients, that rely on the hyperbolic Directed Spanning Forest (DSF) introduced and studied in Flammant (2019). First, the hyperbolic metric allows us to obtain fine control of the branches’ fluctuations in the hyperbolic DSF without using planarity arguments. Then, we couple the hyperbolic RST with the hyperbolic DSF and conclude thanks to the precise estimates mentioned before.
Keywords: Continuum percolation; Hyperbolic space; Stochastic geometry; Random geometric tree; Radial spanning tree; Directed spanning forest; Poisson point processes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:172:y:2024:i:c:s0304414924000243
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104318
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().