Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials
Jianhai Bao,
Rongjuan Fang and
Jian Wang
Stochastic Processes and their Applications, 2024, vol. 172, issue C
Abstract:
In this paper, we address exponential ergodicity for Lévy driven Langevin dynamics with singular potentials, which can be used to model the time evolution of a molecular system consisting of N particles moving in Rd and subject to discontinuous stochastic forces. In particular, our results are applicable to the singular setups concerned with not only the Lennard-Jones-like interaction potentials but also the Coulomb potentials. In addition to Harris’ theorem, the approach is based on novel constructions of proper Lyapunov functions (which are completely different from the setting for Langevin dynamics driven by Brownian motions), on invoking the Hörmander theorem for non-local operators and on solving the issue on an approximate controllability of the associated deterministic system as well as on exploiting the time-change idea.
Keywords: Langevin dynamic; Lévy noise; Singular potential; Exponential ergodicity; Lyapunov function (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:172:y:2024:i:c:s0304414924000474
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104341
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().