Optimal stopping of BSDEs with constrained jumps and related zero-sum games
Magnus Perninge
Stochastic Processes and their Applications, 2024, vol. 173, issue C
Abstract:
In this paper, we introduce a non-linear Snell envelope which at each time represents the maximal value that can be achieved by stopping a BSDE with constrained jumps. We establish the existence of the Snell envelope by employing a penalization technique and the primary challenge we encounter is demonstrating the regularity of the limit for the scheme. Additionally, we relate the Snell envelope to a finite horizon, zero-sum stochastic differential game, where one player controls a path-dependent stochastic system by invoking impulses, while the opponent is given the opportunity to stop the game prematurely. Importantly, by developing new techniques within the realm of control randomization, we demonstrate that the value of the game exists and is precisely characterized by our non-linear Snell envelope.
Keywords: Backward stochastic differential equations; Control randomization; Impulse control; Lévy process; Non-Markovian; Optimal stopping (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000619
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104355
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().