EconPapers    
Economics at your fingertips  
 

Networks of reinforced stochastic processes: Probability of asymptotic polarization and related general results

Giacomo Aletti, Irene Crimaldi and Andrea Ghiglietti

Stochastic Processes and their Applications, 2024, vol. 174, issue C

Abstract: In a network of reinforced stochastic processes, for certain values of the parameters, all the agents’ inclinations synchronize and converge almost surely toward a certain random variable. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly positive, or equal to one. Moreover, we present a suitable technique to estimate this probability that, along with the theoretical results, has been framed in the more general setting of a class of martingales taking values in [0,1] and following a specific dynamics.

Keywords: Interacting random systems; Network-based dynamics; Reinforced stochastic processes; Urn models; Martingales; Polarization; Touching the barriers; Opinion dynamics; Simulations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000826
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000826

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2024.104376

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000826