Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation
Donatas Surgailis
Stochastic Processes and their Applications, 2024, vol. 174, issue C
Abstract:
We study scaling limits of nonlinear functions G of random grain model X on Rd with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity M of the underlying Poisson process of grains increases together with the scaling parameter λ as M=λγ, for some γ>0. The results are applicable to the Boolean model and exponential G and rely on an expansion of G in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.
Keywords: Random grain model; Boolean model; Scaling limit; Charlier polynomials; Mehler’s formula; Burgers’ equation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924000966
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000966
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104390
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().