A multi-dimensional version of Lamperti’s relation and the Matsumoto–Yor processes
Thomas Gerard,
Valentin Rapenne,
Christophe Sabot and
Xiaolin Zeng
Stochastic Processes and their Applications, 2024, vol. 175, issue C
Abstract:
The distribution of a one-dimensional drifted Brownian motion conditioned on its first hitting time to 0 is the same as a three-dimensional Bessel bridge. By applying the time change in Lamperti’s relation to this result, Matsumoto and Yor (2001) showed a relation between Brownian motions with opposite drifts. In two subsequent papers (Matsumoto and Yor, 2000; 2001), they established a geometric lifting of the process 2M-B in Pitman’s theorem, known as the Matsumoto–Yor process. They also established an equality in law involving Inverse Gaussian distribution and its reciprocal (as processes), known as the Matsumoto–Yor property, by conditioning some exponential Wiener functional.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924001078
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104401
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().